Learning Graphical Game Models
نویسندگان
چکیده
Graphical games provide compact representation of a multiagent interaction when agents’ payoffs depend only on actions of agents in their local neighborhood. We formally describe the problem of learning a graphical game model from limited observation of the payoff function, define three performance metrics for evaluating learned games, and investigate several learning algorithms based on minimizing empirical loss. Our first algorithm is a branch-and-bound search, which takes advantage of the structure of the empirical loss function to derive upper and lower bounds on loss at every node of the search tree. We also examine a greedy heuristic and local search algorithms. Our experiments with directed graphical games show that (i) when only a small sample of profile payoffs is available, branch-and-bound significantly outperforms other methods, and has competitive running time, but (ii) when many profiles are observed, greedy is nearly optimal and considerably better than other methods, at a fraction of branch-andbound’s running time. The results are comparable for undirected graphical games and when payoffs are sampled with noise.
منابع مشابه
Graphical Potential Games
Potential games, originally introduced in the early 1990’s by Lloyd Shapley, the 2012 Nobel Laureate in Economics, and his colleague Dov Monderer, are a very important class of models in game theory. They have special properties such as the existence of Nash equilibria in pure strategies. This note introduces graphical versions of potential games. Special cases of graphical potential games have...
متن کاملKnowledge Combination in Graphical Multiagent Model
A graphical multiagent model (GMM) represents a joint distribution over the behavior of a set of agents. One source of knowledge about agents' behavior may come from gametheoretic analysis, as captured by several graphical game representations developed in recent years. GMMs generalize this approach to express arbitrary distributions, based on game descriptions or other sources of knowledge bea...
متن کاملLearning Graphical Games from Behavioral Data: Sufficient and Necessary Conditions
In this paper we obtain sufficient and necessary conditions on the number of samples required for exact recovery of the pure-strategy Nash equilibria (PSNE) set of a graphical game from noisy observations of joint actions. We consider sparse linear influence games — a parametric class of graphical games with linear payoffs, and represented by directed graphs of n nodes (players) and in-degree o...
متن کاملApplication of Stochastic Optimal Control, Game Theory and Information Fusion for Cyber Defense Modelling
The present paper addresses an effective cyber defense model by applying information fusion based game theoretical approaches. In the present paper, we are trying to improve previous models by applying stochastic optimal control and robust optimization techniques. Jump processes are applied to model different and complex situations in cyber games. Applying jump processes we propose some m...
متن کاملGame Design and Development for Learning Physics Using the Flow Framework
Instruction, in several knowledge domains, aims at achieving two goals: acquisition of a body of knowledge and of problem solving skills in the field. In physics, this requires students to connect physical phenomena, physics principles, and physics symbols. This can be learned on paper, but interactive tools may increase the learner’s ability to contextualize the problem. Computer simulations p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009